Space, time and learning in the hippocampus: How fine spatial and temporal scales are expanded into population codes for behavioral control
نویسندگان
چکیده
The hippocampus participates in multiple functions, including spatial navigation, adaptive timing and declarative (notably, episodic) memory. How does it carry out these particular functions? The present article proposes that hippocampal spatial and temporal processing are carried out by parallel circuits within entorhinal cortex, dentate gyrus and CA3 that are variations of the same circuit design. In particular, interactions between these brain regions transform fine spatial and temporal scales into population codes that are capable of representing the much larger spatial and temporal scales that are needed to control adaptive behaviors. Previous models of adaptively timed learning propose how a spectrum of cells tuned to brief but different delays are combined and modulated by learning to create a population code for controlling goal-oriented behaviors that span hundreds of milliseconds or even seconds. Here it is proposed how projections from entorhinal grid cells can undergo a similar learning process to create hippocampal place cells that can cover a space of many meters that are needed to control navigational behaviors. The suggested homology between spatial and temporal processing may clarify how spatial and temporal information may be integrated into an episodic memory. The model proposes how a path integration process activates a spatial map of grid cells. Path integration has a limited spatial capacity, and must be reset periodically, leading to the observed grid cell periodicity. Integration-to-map transformations have been proposed to exist in other brain systems. These include cortical mechanisms for numerical representation in the parietal cortex. As in the grid-to-place cell spatial expansion, the analog representation of number is extended by additional mechanisms to represent much larger numbers. The model also suggests how visual landmarks may influence grid cell activities via feedback projections from hippocampal place cells to the entorhinal cortex.
منابع مشابه
How Fine Spatial and Temporal Scales Are Expanded into Population Codes for Behavioral Control
The hippocampus participates in multiple functions, including spatial navigation, adaptive timing, and declarative (notably, episodic) memory. How does it carry out these particular functions? The present article proposes that hippocampal spatial and temporal processing are carried out by parallel circuits within entorhinal cortex, dentate gyrus, and CA3 that are variations of the same circuit ...
متن کاملInvestigating the Use of Games and Flash Cards in Teaching Spatial and Temporal Prepositions to Iranian Pre-Intermediate EFL Learners
One of the most problematic areas for teachers and learners in English classrooms is prepositions. Two types of prepositions in English are spatial (space) and temporal (time) prepositions. Prepositions are words linking two entities and thereby specifying the relation of the two. The main purpose of this study was to investigate the role of games and flash cards in learning place and time prep...
متن کاملThe effect of reversible inactivation of raphe nuclus on learning and memory in rats
The role of raphe nucleus (R.N) and serotonin in some behaviors such as sleep, cognition, mood, and memory has previously been reported. The median raphe (MR) nucleus is a major serotonin-containing cell group within the brainstem and is one of the main sources of projections to the septum and hippocampus. The hippocampus is widely believed to be essential for context-conditioning learning. Mor...
متن کاملThe effect of reversible inactivation of raphe nuclus on learning and memory in rats
The role of raphe nucleus (R.N) and serotonin in some behaviors such as sleep, cognition, mood, and memory has previously been reported. The median raphe (MR) nucleus is a major serotonin-containing cell group within the brainstem and is one of the main sources of projections to the septum and hippocampus. The hippocampus is widely believed to be essential for context-conditioning learning. Mor...
متن کاملMicroinjection of Dihydrotestosterone as a 5α-Reduced Metabolite of Testosterone into CA1 Region of Hippocampus Could Improve Spatial Learning in the Adult Male Rats
CA1 region of hippocampus has an important role in learning and memory. Previous reports have shown that androgens like testosterone and its metabolites are present in high concentration in CA1 region of hippocampus. Androgen receptors have also high density in this region. Therefore, it is suggested that neurohormones in CA1 have an important role in learning and memory. It is likely that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2007